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We investigate analytically and numerically the modulational instability of a Bose-Einstein condensate with
both two- and three-body interatomic interactions and trapped in an external parabolic potential. Analytical
investigations performed lead us to establish an explicit time-dependent criterion for the modulational insta-
bility of the condensate. The effects of the potential as well as of the quintic nonlinear interaction are studied.
Direct numerical simulations of the Gross-Pitaevskii equation with two- and three-body interactions describing
the dynamics of the condensate agree with the analytical predictions.
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I. INTRODUCTION

Bose-Einstein condensation �BEC� is a ubiquitous phe-
nomenon that plays a significant role in condensed matter,
atomic, nuclear, and elementary particle physics, as well as
in astrophysics �1�. Its most striking feature is a macroscopic
population of the ground state of the system at finite tem-
perature �2�. The study of BEC in weakly interacting systems
holds the promise of revealing new macroscopic quantum
phenomena that can be understood from first principles, and
may also advance our understanding of superconductivity
and superfluidity in more complex systems. The spatial con-
traction of wave packets and the formation of a singularity in
finite time, wave collapse or, more generally, the blowup of
the wave packet are basic phenomena in nonlinear physics of
wave systems. Examples are the self-focusing of light in op-
tics �3,4�, the collapse of Langmuir waves in plasma �5�, the
self-focusing of gravity-capillary surface waves �6�, the
blowup of nonlinear electronic excitations in molecular sys-
tems �7�, and collapse in a Bose gas with negative scattering
length. There have been several theoretical studies on differ-
ent aspects of BEC in one- �8–10� as well as three-
dimensional �10,11� optical-lattice potentials combined with
axially symmetric harmonic ones.

Progress with BEC on the surface of atomic chips and
atomic waveguides involves a strong compression of the
BEC and an essential increase of its density. Then the prob-
lem arises of taking into account three-body interaction ef-
fects, corresponding to a quintic mean-field nonlinearity.
This interaction is interesting also for an understanding of
the fundamental limits of the functioning of BEC-based de-
vices �12�. The existence of three-body interactions can play
an important role in condensate stability �13,14�. Recently,
three-body interactions arising due to the Efimov resonance
were observed in an ultracold gas of cesium atoms �15�.
Thus it is interesting to investigate the properties of discrete
breathers in BECs in optical lattices when two- and three-

body interactions are taken into account. One important
property of this system is the existence of gap-Townes soli-
tons �16,17� and the essential modification of energy band
properties by the three-body interaction �18�. In the tight-
binding approximation, the Gross-Pitaevskii �GP� equation
with two- and three-body interactions and a periodic poten-
tial can be reduced to the cubic-quintic discrete nonlinear
Schrödinger �CQDNLS� equation. This regime, realized in
typical experiments with BECs �19�, occurs for a deep opti-
cal lattice. The GP equation with cubic and quintic nonlin-
earities also appears in the description of the evolution of a
broad gap soliton under the joint action of linear and nonlin-
ear optical lattices. If the nonlinear optical lattice rapidly
varies in space in comparison with the periodic potential one,
averaging the GP equation over this modulation leads to the
appearance of an effective quintic nonlinearity �20,21�.

An important aspect of the investigation is the underlying
physical mechanism of BEC solitary waves, since it is be-
lieved that the generation and evolution of BEC solitary
waves is important for a number of BEC applications, such
as atomic interferometry �22� and different kinds of quantum
phase transitions �23�, as well as in the context of nonlinear
physics, including nonlinear optics and hydrodynamics. In
the relevant experiments, bright solitons have been created
by changing the s-wave scattering length from positive to
negative �9�. On the other hand, it was shown that bright
solitary wave structures may appear by the activation of a
modulational instability �MI� of plane waves �24�. In this
case, the continuous wave solution becomes unstable toward
the generation of a chain of bright solitons.

The formation of localized, coherent solitary wave struc-
tures, i.e., localization in position space, is equivalent to de-
localization in momentum space. It is a result of modula-
tional instability �24–28� for which, a specific range of wave
numbers of plane-wave profiles becomes unstable to modu-
lations, leading to an exponential growth of the unstable
modes and eventually to that delocalization �26–28�. MI is a
general feature of continuum as well as discrete nonlinear
matter-wave equations and has been both experimentally and
theoretically established as responsible for not only the po-
sition space localization but also dephasing. In the present
work, we reconsider theoretically and numerically the MI for
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a trapped BEC immersed in a highly elongated harmonic
trap, considering both two- and three-body interactions. Our
interest is to derive an explicit time-dependent criterion for
MI for such a system. With this aim, we perform a modified
lens-type transformation which converts our initial GP equa-
tion, with real position-dependent parabolic potential and
constant coefficients of nonlinearity, into a GP equation with-
out potential and with a constant coefficient of quintic non-
linearity and a time-dependent coefficient of cubic nonlinear-
ity. The work is organized as follows In Sec. II, we present
the mathematical framework and the MI in the CQNLS
equation as well as the stability regions of the wave in the
lattice. Then in Sec. III, we perform a direct numerical inte-
gration of the initial one-dimensional �1D� GP equation to
study the MI numerically. The results obtained are compared
to those of the analytical treatment and excellent agreement
is found. Section IV is devoted to conclusion.

II. GENERAL CONSIDERATIONS AND ANALYTICAL
RESULTS

The system, a BEC trapped in a harmonic potential in the
presence of two- and three-body interatomic interactions, can
be described by a quasi-1D GP equation, which has the form
of a CQNLS equation, written in the normalized form �16�

i�t = − �xx + V�x�� + g0���2� + ����4� , �1�

where � is the normalized macroscopic wave function.
V�x�=�x2 is the external harmonic �magnetic� potential
which will be taken as attractive �25�, i.e., the trapping co-
efficient � �a real constant here� is positive. g0 and � are,
respectively, the two- and three-body interaction coefficients,
positive for repulsive interatomic interactions and negative
for attractive ones �29�. Such an equation also serves as a
mean-field model in the description of the dynamics of a
cigar-shaped BEC with repulsive interatomic interactions
trapped in the potential V�x� �30�. The CQNLS equation ap-
pears in the context of nonlinear photonic crystals �16,31�.
This equation is also used as a model for the propagation of
optical pulses in double-doped optical fibers with an effec-
tive refractive index �16,32�. When the cubic nonlinearity
term is absent, the resultant equation is a model for the dy-
namics of the Bose gas with hard-core interactions in the
Tonks-Girardeau regime �25,16,33�.

For MI investigations in a BEC, let us first perform a
modified lens-type transformation. For this, we set �25�

��x,t� =
1

���t�
��X,T� exp�if�t�x2� , �2�

in which we choose ��t�= �cos�2��t��, X= x
��t� , T�t�

= 1
2��

tan�2��t�, and f�t�=−
��
2 tan�2��t�. The rescaling signals

singularity at any t� �2n+1��
4��

�n is a positive integer� in the
�t ,T� domain and the possibility for T to be negative. We
focus our study on the case where t goes from zero to �

4��
to

guarantee that T goes from zero to infinity. Then Eq. �1�, in
terms of rescaled variables X and T, is reduced to

i�T = − �XX + g�T����2� + ����4� , �3�

where g�T�=g0�1+4�T2�−1/2. This rescaled equation has the
form of a CQNLS equation with a time-dependent coeffi-
cient and, importantly, without a potential.

In order to examine the MI of the BEC, we use the ansatz

� = ��0 + ���exp�− i�
0

T

����d�	 , �4�

where ��T� is a real time-dependent function representing
the nonlinear frequency shift, �0 is a real constant, and �� is
the amplitude perturbation. Substituting Eq. �4� into Eq. �3�,
neglecting second-order terms in �� and its complex conju-
gate ���, we take

��T� = �0
2�g�T� + ��0

2� , �5�

to obtain the following equation describing the dynamics of
the perturbation:

i
���

�T
= −

�2��

�X2 + 	�T���� + ���� . �6�

In Eq. �6�, 	�T�=�0
2�g�T�+2��0

2�. Let u1 and u2 be, respec-
tively, the real and imaginary parts of ��. Then Eq. �6� is
transformed into the following two coupled equations:

�u1

�T
+

�2u2

�X2 = 0, �7�

−
�u2

�T
+

�2u1

�X2 − 2	�T�u1 = 0. �8�

Now, we consider that the variation of the perturbation obeys
the expression:

u1 = Re
U1 exp�i�KX − �
0

T


���d�	�
and

u2 = Im
U2 exp�i�KX − �
0

T


���d�	� , �9�

where KX−�0
T
���d� is the modulation phase in which K

and 
 are, respectively, the wave number and frequency of
the modulation. After some calculations, we obtain the fol-
lowing explicitly time-dependent dispersion relation:


2 = K4�1 + 2��0

K
	2

�g0�1 + 4�T2�−1/2 + 2��0
2�� . �10�

For the MI to arise, the frequency of modulation must be
complex with non-nil imaginary part. Such a condition may
be simply realized if the right-hand side of Eq. �10� is nega-
tive; that is,

2g0��0

K
	2

�1 + 4�T2�−1/2 + 4��0
2��0

K
	2

+ 1 � 0. �11�

In that case, the local growth rate of instability is given by
the relation
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Im 
 = K2�− �1 + 2��0

K
	2

�g0�1 + 4�T2�−1/2 + 2��0
2�� .

�12�

For attractive �to which we restrict this study� two-body in-
teratomic interaction, the relation �11� may be rewritten in
the form

2�g0���0

K
	2

�1 + 4�T2�−1/2 � 4��0
2��0

K
	2

+ 1. �13�

Taking into account, in relation �13�, the fact that
0� �1+4�T2�−1/21, we obtain the result that the unstable
modes exist for ���c, with �c= 1

2�0
2 �g0�, and the correspond-

ing wave numbers satisfy the condition

K � Kc where Kc = 2��c − ��0
2. �14�

We discuss three regimes in relation �13�.
�i� For ���c, all the modes are expected to be modula-

tionally stable.
�ii� For �� �0,�c�, in the case ��0 and for unstable

modes corresponding to �14�, the modulational instability
may develop during a time scale: T�Tc

= 1
2��

���c−�−Q2���c+�+Q2�
�+Q2 ; where Q2= K2

4�0
4 . Such a time scale cor-

responds, in terms of the physical variable t, to

t � tc =
1

2��
arccos�K2 + 4��0

4

4�c�0
4 	 . �15�

�iii� For ��0, for unstable modes K�Ks �with
Ks=2�����0

2� obeying the condition �14�, the modulational
instability may develop during the time scale t� tc and for
unstable modes KKs it may set in early. The analytical
treatment of the critical time tc as a function of wave number
K, trapping parameter �, and quintic nonlinearity coefficient
� leads to the following observations �Fig. 1�. From relation
�15�, it is obvious that, for ���c, tc is undefined for every
wave number and every trapping parameter. In Fig. 1�a�,
�� �−�c ,�c�, tc decreases as a function of K until K=Kc
�moreover, for the same K, it decreases when � or �, see Fig.
1�c��, where it becomes nil �see Fig. 1�a��. tc is undefined for
values of K higher than Kc. We note that Kc decreases when
� increases. In Fig. 1�b�, ��−�c, the graph tc= f�K� for any
value of the trapping parameter presents an inflection point at
K=Ks. tc is undefined for increasing wave number until a
particular value Kc�=2�−�c−��0

2, where it takes a nonzero
value �that value decreases when the trapping parameter in-
creases�. Then tc decreases �with an inflection point at K
=Ks� when the wave number increases from the particular
value Kc� to the particular value Kc. For K=Kc, tc takes the
value zero and is undefined for values of K higher than Kc
�see Fig. 1�b��. Let us note that, when � increases, Kc� and Kc
decrease, in contrast to the difference 	Kc=Kc−Kc�.

Figure 2 shows the regions of MI obtained from the ana-
lytical study. In this figure, we plot the wave numbers
Kc=2��c−��0

2 and Ks=2�����0
2 as functions of the quintic

nonlinearity parameter �; we therefore obtain three zones of
instability and stability in the plane �� ,K�. For a point �� ,K�
taken in zone I, the MI may develop as soon as the experi-

ment begins. In zone II the MI may develop during the time
scale t� tc. For the last zone �IIIa and IIIb� the system is
expected to be modulationally stable. Waves are stable at
every time in IIIb and just for a critical time ts

= 1
2��

arccos�
Kc

K � for IIIa. The critical time ts is derived by
realizing that the effective wave number of the initial pertur-
bation �16� is K�cos�2��t�� rather than K, on account of the
�modified� lens-type transformation. It should be noted that
the existence of the three zones is due to the simultaneous
consideration of the cubic-quintic nonlinearities. When the

0 0.5 1 1.5
0

5

10

15

20

25

30

35

Wave number ( K )

t c

1 1.2 1.4 1.6 1.8 2 2.2
0

10

20

30

40

50

Wave number ( K )

t c

0.5 1 1.5 2 2.5

x 10
−3

10

15

20

25

30

35

40

45

50

Trapping ( α )

t c

(a)

(b)

(c)

FIG. 1. �Color online� Variation of the critical time scale versus
the wave number and trapping parameter. The parameters used are
�a� �=0.001, �=−0.25 ��� �−�c ,�c�, with �c=0.5�; �b� �=0.001,
�=−0.75 ���−�c�; �c� K=0.50, �=0.25.
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two-body interaction is switched off, the zone II disappears.
But, when the three-body interaction is neglected the
instability-stability diagram in Fig. 2 merely reduces to the
line �=0.

As noted in Ref. �25�, it has also been verified here that
external trapping �via �� enhances the instability, and the
instability occurs at a short time scale for stronger trapping
�see Fig. 1�c��. Some interesting results emerge from our
analysis.

In particular, in the absence of the quintic nonlinearity,
unstable modes must always exist due to the cubic nonlin-
earity �see Eq. �14��. Moreover, when the quintic nonlinear-
ity is taken into account, the MI may appear or not, depend-
ing on the value of the coefficient � �in the presence or
absence of the cubic nonlinearity, controllable by the Fesh-
bach resonance technique�. However, the absence of the cu-
bic nonlinearity in this case leads the system to have only
attractive three-body interactions, while its presence permits
the system to admit both attractive and repulsive three-body
interactions. Thus the simultaneous presence of the cubic and
quintic nonlinearities plays a very important role in the un-
derstanding of the diversified behaviors of BECs. The quintic
nonlinearity provides also the possibility to control the do-
main of unstable modes. It also softens the destabilizing ef-
fects of external trapping and the cubic nonlinearity param-
eters.

Demonstrations of MI span a diverse set of disciplines
ranging from fluid dynamics and plasma physics to nonlinear
optics. In the context of nonlinear optics, MI has been exam-
ined using the generalized NLS equation with a nonlinear
term of general form �34�. Therefore, in the framework of
linear stability theory, we might also expected in the case of
a BEC the same feature observed in nonlinear optics: the
dynamics of beam propagation shows that beams with a
slightly perturbed initial solution not only evolve to a perfect
solitary beam but also lead to periodic oscillations of the
amplitude �34,35�.

III. NUMERICAL TREATMENT AND COMPARISON
WITH ANALYTICAL RESULTS

To verify the MI conditions for BECs derived in the pre-
vious section, we perform direct numerical integrations of

the CQNLS equation �1�. The initial condition used is

��x,0� = �TF„�0 + � cos�Kx�… , �16�

where �TF=�max�0;1−V�x�� is the background wave func-
tion in the Thomas-Fermi �TF� approximation. In a region
close to the center x=0 and for convenient values of the
potential, �TF�1− 1

2V�x�=1− 1
2�x2 �25,30�. In all numerical

simulations, we have taken �0=1, g0=−1, and �=0.01
�small compared to �0�. Fixed boundary conditions are used.
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FIG. 2. �Color online� Regions of modulational stability and
instability in the �� ,K� plane. The parameters used are g0=−1; �0

=1.
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FIG. 3. Spatial evolution of modulated waves in term of solitary
waves on top of the TF cloud, introducing the occurrence of the
modulational instability, for weak trapping ��=0.0004�. The other
parameters are �=0.10, K=0.50 �the point is located in zone II�,
and t= �a� 1, �b� 7, and �c� 15.
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Most of the simulations are made with a space extending
from x=−80 to 80.

Now, to illustrate our theoretical predictions, let us launch
solution �16� through the system. For a point in zone II, the
MI is predicted by the analytical study. Figure 3 depicts the
spatial evolution of a modulated envelope solitary wave on
top of the TF cloud ����x , t��2�. The initial wave �Fig. 3�a��
breaks up into a pulse chain �Fig. 3�b� at t=7 and Fig. 3�c� at
t=15� as the time increases. That gives a proof of the devel-
opment of MI in the system. We note that, while the width of
each pulse decreases, the magnitude of the pulse increases.

The number of pulses in the chain increases too. Figure 4
shows the time evolution of the maximal amplitude
����x , t��max� in Figs. 4�a� and 4�c�; and the spatiotemporal
evolution of the modulated envelope ���x , t��2 in Figs. 4�b�
and 4�d� for two different values of the trapping parameter.
By comparing Figs. 4�a� and 4�c� we realize that, for the
strong trapping case in Fig. 4�c�, the instability sets in earlier.
The theoretical time scales for the two cases, tc=31 and 9.8,
respectively, are numerically recovered during simulations.
So the trapping enhances the instability. From Fig. 5, the
same results are observed; the theoretical time scale is tc
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FIG. 4. �Color online� Spa-
tiotemporal evolution of the maxi-
mum amplitude of the waves
through the system, showing the
modulational instability for differ-
ent trappings. The parameters are
�=0.10 and K=0.50 �the point
used here is taken in zone II�. �a�
���x , t��max for �=0.0004 �weak
trapping�. �b� ���x , t��2 for
�=0.0004 �weak trapping�. �c�
���x , t��max for �=0.004 �strong
trapping�. �d� ���x , t��2 for
�=0.004 �strong trapping�.
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FIG. 5. �Color online� Spa-
tiotemporal evolution of the maxi-
mum amplitude, showing the in-
fluence of the presence of the
trapping on modulational instabil-
ity, for the parameters �=0.25 and
K=0.25 �a point of zone II�. �a�
���x , t��max for �=0 �trapping
turned off�. �b� ���x , t��2 for �=0
�trapping turned off�. �c�
���x , t��max for �=0.001 �trapping
turned on�. �d� ���x , t��2 for
�=0.001 �trapping turned on�.
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=16 while the computational one is approximately tc=18.
But there is a more interesting aspect when the trapping is
completely turned off �Fig. 5�a��. The difference between
Fig. 5�a� and Fig. 5�c� resides in the fact that, in the limit
�=0, we can only obtain T= t, as given by the lens-type
transformation, such that Eqs. �1� and �3� are simply equiva-
lent. According to that transformation, Tc= 1

2��
tan�2��tc�. So

the case tc=18 corresponds to Tc=34.3, when �=0.001;
which is in agreement with the numerical observations in
Figs. 5�a� and 5�b�. We remark that, for modulationally un-
stable modes launched with �16�, the chain of pulses is made
of two symmetric trains �Figs. 3�c� and 4�d��. When the
trapping ��0, the wave trains oscillate during the propaga-
tion in opposite directions and around x=0, with frequency
close to 2��

� �see Figs. 4�d�, 5�d�, and 9�b��. So the trains of
solitons strongly attract and trap each other and subsequently
propagate together as a bound state exhibiting transverse oscillations. Figure 6 illustrates the time evolution of the

modulated maximum amplitude for different perturbation
wave numbers. This figure indicates that the development of
MI depends on the perturbation wave number.

In region IIIb, the system is predicted to be modulation-
ally stable. Let us consider the BEC with parameters of Fig.
5�c� but with � increased to 0.75, 1.00, and 1.75, respec-
tively. Figure 7 displays results obtained from the numerical
simulations with these parameters. One can see that, as the
quintic parameter increases, the magnitude of the waves de-
creases. Despite the trapping and the cubic nonlinearity,
which is known to be destabilizing, the stability here can be
obtained due to the quintic nonlinearity. Indeed, many works
have already pointed the fact that the quintic nonlinearity can
be used to stabilize a system �36,37�: Soto-Crespo et al.
�36,37� studied the cubic-quintic Ginzburg-Landau equation
having several exact soliton solutions in mind. However, by
numerical study, they found that solitons are unstable in the
model where the highest nonlinearity is cubic. Quintic terms
have to be added to the system to obtain stable localized
solutions. The present study also shows the usefulness of the
quintic nonlinear term in a BEC. The BEC undergoes, for a
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FIG. 6. �Color online� Time evolution of the maximum modulus
of the waves ����x , t��max� through the system, showing the decrease
of time scale when the wave number increases, for two wave num-
bers K=0.25 and 0.50 corresponding to points located in zone II.
The other parameters are �=0.25 and �=0.001.
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cated in zone IIIb. The other parameters are K=0.25 and �=0.001.
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FIG. 8. �Color online� Recurrence phenomenon of the system
stabilized by the quintic nonlinearity. It is seen through the evolu-
tion of a stable mode �the point used here is chosen in zone IIIb� for
the quintic parameter �=0.75 and during a long period t=500. The
other parameters are K=0.25 and �=0.001. �a� The time evolution
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�b� 3D view of the square modulus of the waves ����x , t��2� through
space and time.
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long period, the recurrence phenomenon plotted in Fig. 8 for
�=0.75. That phenomenon consists of benign oscillations
that do not move the wave magnitude away from its initial
value �0=1.0.

A point in domain IIIa is also supposed to be stable but no
longer after the critical time ts theoretically given by ts

= 1
2��

arccos�
Kc

K �. We choose �=0.1 and Kc=1.265. For the
point �0.1,2� belonging to that domain, we present in Fig. 9
the time evolution of the maximum amplitude of the wave
function. The instability is set in around ts=14 as predicted
analytically.

Finally, in zone I, let us pick three points �−1.5,1�,
�−1.0,1�, and �−0.5,1�. Figure 10 depicts the time evolution
of the maximum amplitude for these different points. We
realize that the MI does not arise exactly at t=0. It occurs
near the origin but after a time scale greater than 2. This may
probably be related to the fact that solitary waves need a
minimum time scale to develop.

Some of the phenomena found here have been reported
previously for other physical systems. When the dynamics of
the BEC is governed by the discrete nonlinear Schrödinger
equation, intrinsically localized excitations, including dis-
crete solitons and breathers, can be created �9,10,38�. In the

context of the “traditional” NLS equation �without the exter-
nal potential�, perhaps the most standard mechanism through
which bright solitons and solitary wave structures appears is
through the activation of the MI of plane waves. In this case,
the continuous wave solution of the NLS equation becomes
unstable toward the generation of a chain of bright solitons.
In this work we have shown that, under certain conditions,
this may also happen in the case of the Gross-Pitaevskii
equation with two- and three body interactions as well �see
Figs. 3–5, 8, and 9�.

IV. CONCLUSION

We have investigated, both analytically and numerically,
the MI for a BEC with a harmonic potential. Using a modi-
fied lens-type transformation �in the limit of some restric-
tions�, we have obtained time-dependent criteria for MI �re-
lation �13��. It should be noted that a modulationally unstable
mode needs some time to develop into a solitary wave chain
�relation �15��. If a system does not have enough time, the
solitary wave train structure will not appear. It is clear, as
some studies have shown, that the three-body interatomic
interaction term can play an important role. Hence, we have
determined the MI domains as a function of the quintic term
� in the �� ,K� plane �Fig. 2�. Thus, ���c waves are stable
at every time and no soliton will be generated �region IIIb�.
For 0����c, two cases occur. The system is stable just for
the critical time ts= 1

2��
arccos�

Kc

K � �region IIIa�. But the de-
velopment of modulational unstable modes into a solitary
wave chain will be effective during the time scale t� tc

= 1
2��

arccos�
K2+4��0

4

4�c�0
4 � �region II�. In the case ��0, the MI

may develop as soon as the experiment begins �region I�.
The analytical approach showed that the modulational insta-
bility is widely influenced by the quintic nonlinearity in ad-
dition to the cubic one.

We have used direct numerical simulations of the
GP equation to prove the validity of our analytical predic-
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FIG. 9. �Color online� Rise of instability in an initially stable
mode. The parameters are �=0.10 and K=2.00 �corresponding to a
point of zone IIIa� and �=0.001. �a� The time evolution of the
maximal modulus of the waves ����x , t��max� through space. �b� 3D
view of the square modulus of the waves ����x , t��2� through space
and time.
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FIG. 10. �Color online� Modulational instability of three points
picked in zone I. The time evolution of the maximum modulus of
the waves ����x , t��max� through the system for a mode predicted to
be initially unstable is shown for three values of the quintic param-
eter �=−1.50, 1.00, and −0.50 �corresponding to points of zone I�.
The other parameters are K=1.00 and �=0.001.
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tions, and excellent agreement is obtained. Numerical experi-
ments have shown that, when the analytical predictions
of the MI condition are satisfied, there is formation of local-
ized pulses and wave trains. Our results also point out the

crucial role of the simultaneous presence of two- and
three-body interatomic interactions in the dynamics of BECs,
as well as the importance of the external trapping parameter
�.
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